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Initial-Boundary Value Problems 
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To Eugene Isaacson on his 65th birthday 

Abstract. New convenient stability criteria are provided in this paper for a large class of 
finite-difference approximations to initial-boundary value problems associated with the hyper- 
bolic system u, = Au, + Bu + f in the quarter plane x > 0, t > 0. Using the new criteria, 
stability is easily established for numerous combinations of well-known basic schemes and 
boundary conditions, thus generalizing many special cases studied in the recent literature. 

0. Introduction. In this paper we extend the results of [3] to obtain convenient, 
more versatile, sufficient stability criteria for a wide class of difference approxima- 
tions for initial-boundary value problems associated with the hyperbolic system 
ut = Aux + Bu + f in the quarter plane x > 0, t > 0. Our difference approximation 
consists of a general difference scheme-explicit or implicit, dissipative or not, 
two-level or multi-level-and boundary conditions of the type discussed in [3]. 

We restrict attention to the case where the outflow part of our boundary 
conditions is translatory; i.e., determined at all boundary points by the same 
coefficients. Such boundary conditions are commonly used in practice; and in 
particular, when the boundary consists of a single point, the boundary conditions are 
translatory by definition. 

Throughout the paper we assume that the basic scheme is stable for the pure 
Cauchy problem, and that the assumptions that guarantee the validity of the 
stability theory of Gustafsson, Kreiss and Sundstrom [5] hold in our case. With this 
in mind, we raise the question of stability for our approximation in the sense of 
Definition 3.3 in [5]. 

We begin our stability analysis in Secton 1 by recalling Theorem 2.1 of [3], which 
implies that the entire approximation is stable if and only if the scalar outflow 
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componepts of its principal part are stable. Thus, our global stability question is 
reduced to that of a scalar, homogeneous, outflow problem which is the main subject 
of this paper. 

Our stability criteria for the reduced problem-stated in the first part of Section 2 
and proven in Section 3-depend both on the basic scheme and the boundary 
conditions, but very little on the intricate interaction between the two. Consequently, 
our new criteria provide in many cases a convenient alternative to the well-known 
Gustafsson-Kreiss-Sundstrbm criterion in [5]. 

In the second part of Section 2, we use the new stability criteria to reestablish all 
the main examples in our previous paper [3]. We show that if the basic scheme is 
arbitrary (dissipative or not) and the boundary conditions are generated by either 
the explicit or implicit right-sided Euler schemes, then overall stability is assured. 
For dissipative basic schemes we prove stability if the boundary conditions are 
determined by either oblique extrapolation, by the Box-Scheme, or by the right-sided 
weighted Euler scheme. 

Section 2 contains some new examples as well. Among these we find that if the 
basic scheme is arbitrary and two-level, then horizontal extrapolation at the boundary 
maintains overall stability. Other stable cases occur when the basic scheme is given 
by either the Crank-Nicolson scheme or by the backward (implicit) Euler scheme, 
and the boundary conditions are determined by oblique extrapolation. Such exam- 
ples, where neither the basic scheme nor the boundary conditions are dissipative, 
could not have been handled by our previous results in [3]. 

All told, our examples in this paper incorporate most of the cases discussed in the 
recent literature; e.g. [1]-[3], [5], [6], [8]-[10], [12], [13], [15], [16]. 

As in [3], we point out that there is no difficulty in extending our stability criteria 
to problems with two boundaries. This is so since, if the corresponding left and right 
quarter-plane problems are stable, then by Theorem 5.4 of [5], the original problem 
is stable as well. 

1. The Difference Approximation and the Reduced Problem. Consider the first-order 
hyperbolic system of partial differential equations 

(1.la) au(x, t)/at = A au(x, t)/8x + Bu(x, t) + f(x, t), x > 0, t > 0, 

where u(x, t) = (u(1)(x, t), . . ., (n) (x, t))' is the unknown vector (prime denoting 
the transpose), f(x, t) = (f (1)(x, t), ... ,f (n)(X, t))' is a given vector, and A and B are 
fixed n X n matrices such that A is Hermitian and nonsingular. Without restriction 
we may assume that A is diagonal of the form 

(1.2) A=(A I,) A'<OA",>O, 

where AI and AI" are of orders 1 x / and (n - 1) x (n - 1), respectively. 
The solution of (1.1) is determined uniquely if we prescribe initial values 

(1.lb) u(x, 0) = u?(x), x > 0, 

and boundary conditions 

(1.lc) uI(0, t) = Su"(0, t) + g(t), t > 0, 
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where S is a fixed 1 x (n - 1) matrix, g(t) is a given i-vector, and 

(1.3) uI = (U () I... I ,u ())II uII = (u(1+1) I. u (n)' 

is a partition of u into its inflow and outflow components, corresponding to the 
partition of A in (1.2). 

In order to solve the initial-boundary value problem (1.1) by a finite-difference 
approximation we introduce, as usual, a mesh size Ax > 0, At > 0, such that 
X At/Ax = constant; and using the notation v,(t) = v(vAx, t), we approximate 
(1.la) by a general, consistent, two-sided, solvable, multi-level basic scheme of the 
form 

S 

Q-lv,(t + At) = E Q0v,(t - aAt) + Atb,(t), 

(1.4a) p 

Q?= , AJOEJ' Ev= V+1 a = -1,... s, v = r, r +1. 
j=-r 

Here, the n x n matrices AJO are polynomials in A and AtB, and the n-vectors b,(t) 
depend smoothly on f(x, t) and its derivatives. 

The equations in (1.4a) have a unique solution if we provide initial values 

(1.4b) v'(aAt) = vAU(aAt), a = 0,.. .,s, v = 0,1,2,..., 

where in addition we must specify, at each time step t = fiAt, ,t = s, s + 1,..., 
boundary values v^,(t + A t), v = 0,. .. , r - 1. As in [3], these boundary values will be 
determined by two sets of boundary conditions, the first of which is obtained by 
taking the last n - 1 components of general boundary conditions of the form 

q 

T1 v(t + At) = T 1ov,(t - aAt) + Atd,(t), 
a=o 

m 

TO= ZCjOEa, a=-1,...,q,v=0,...,r-1, 
j=0 

where the matrices Cio are polynomials in A and AtB, the CJ(-1) are nonsingular, and 
the n-vectors d,(t) are functions of f(x, t) and its derivatives. 

If we put 

ii I' II 
Cia =i 

a 
vl ll ,V lv d 

d 
<1 Ca CYIc C ,II v1,= I dl,d= 

in accordance with the partition of A and u in (1.2), (1.3), then this set of conditions 
takes the explicit form 

TVII VV ( t + A t ) + VI,I VV" ( t + At) 
q 

(1.4c) = E [1T"'~I (t - aAt) + LI""IIvI(t - aAt)] + AtdI,(t), 
a=0 

m 

TaIIja E = II0EJ, a = I, II, v = 0,...,r 
j=0 
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We call suyh boundary conditions translatory since they are determined at all 
boundary points by the same coefficients. 

For the second set of boundary conditions we use the analytic condition 

(1.4d) v" (t + At) = SvJ'(t + At) + g(t + At), 

together with r - 1 additional conditions (not necessarily translatory) of the form 
k 

v,'(t + At) = E [DI'Yiv(t + At) + D"v111(t + At)] + Ate'(t), 
(1.4e) 1=1 

where the matrices DJ ,' and DJI of orders l x l and l x (n - 1) respectively- are 
polynomials in the blocks Aa and A tBa6, a, 1B = I, II, of the matching partitions 

A = (A , AtB At(B,,, B 

so that the DI>I vanish whenever B does; and the i-vectors eI(t) are functions of 
f(x, t), g(t), and their derivatives. 

It has been shown in [3] that Eqs. (1.4c)-(1.4e) can be solved uniquely for the 
required boundary values vp(t + At), v = o,... , r - 1, in terms of neighboring 
values of v, at least for sufficiently small At; and that boundary conditions of the 
form (1.4e) can be constructed to any degree of accuracy. A concrete example of 
second-order accurate boundary conditions of the form (1.4e), for the special case 
B = f = 0, was given in [2]. 

The difference approximation is completely defined now by (1.4); so assuming 
that the basic scheme is stable for the pure Cauchy problem (- cx < v < xe), we may 
ask whether the entire approximation is stable. More precisely, we make from now 
on the same assumptions about approximation (1.4) as in [5], so that the stability 
theory of Gustafsson, Kreiss and Sundstrom holds, and we raise the above stability 
question in the sense of Definition 3.3 of [5]. 

As in [3], the first step will be to reduce our stability question to that of a scalar, 
outflow approximation with homogeneous translatory boundary conditions. This 
reduction is obtained by applying (1.4a)-(1.4c) to the scalar outflow problem 

(1.5) ut =auxI a = constant > O, x > O, t > O 

(which requires no analytic boundary conditions), where a varies over the eigenval- 
ues of A". In other words, we set 

A = B = f = O, A= a = constant > O; 
so that (1.la) yields (1.5); and (1.4a)-(1.4c) reduces to a self-contained, scalar, 
homogeneous approximation which consists of the basic scheme 

S 

Q-1vp(t + At) = , Q0vp(t - aAt), v = r, r + 1,..., 
(1.6a) 

-o 

QO = E a,E J, a = -,...s; 
j =-r 

with initial values 

(1.6b) vJ(aAt) = v?(aAt), a = 0, .. ,s, v = 0,1,2, ...; 
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and translatory outflow boundary conditions 

q 

T 1v'(t + At) = , Tav,(t - aAt), v = 0,... ,r-1, 

(1.6c) 'g=? 

To E 5? cj,Ei co(-1) O, a -1,..,q, 
J =O 

where the scalars a., and c.o are polynomials in a, and the basic scheme (1.6a) is 
consistent with (1.5). 

We are now ready to state our main result in Section 2 of [3], which we 
reformulate as follows: 

THEOREM 1.1 ([3, Theorem 2.1]). Approximation (1.4) is stable if and only if its 
reduced form in (1.6) is stable for every eigenvalue a of A",. That is, approximation (1.4) 
is stable if and only if the scalar outflow components of its principal part are stable. 

The above reduction theorem implies that from now on we may restrict our 
stability study to the scalar outflow approximation (1.6). Hence, we conclude this 
section by stating the following five assumptions which will hold throughout the 
paper, and guarantee the validity of the Gustafsson-Kreiss-Sundstrbm theory [5] for 
approximation (1.6). 

Assumption 1.1 ([5, Assumption 3.1]; [3, Assumption 2.1]). Approximation (1.6) is 
boundedly solvable; i.e., there exists a constant K > 0 such that for each y E 12 (Ax) 
there is a unique solution w E 12(Ax) to the equations 

Q-1wV YV, p r, r + 1... . 

711w, Y" v=O,...,r -1, 

with llwll < Kllyll; where Q-1 and T 1 are defined in (1.6a, c), and 12(Ax) is the 
space of all grid functions w = { w^,}? I%with IIwI12 

= AxE,0Iw1WI2 < x. 

Assumption 1.2 ([5, Assumption 5.1]; [3, Assumption 2.2]). The basic scheme is 
stable for the pure Cauchy problem - x' < v < oc. That is, if we define the basic 
characteristic function by 

p 

(1.7) P(z, K) = E aj(z)Kj 
j=-r 

where 

(1.8) aj(z) aj(l) 
- L 

z--laj., 
j= -r, ... p 

a=o 

then we have: 
(i) The von Neumann condition; i.e., the solutions z(K) of the basic characteristic 

equation 

(1.9) P(z, K) = 0 

satisfy 

|z(K)j < 1 for all Kwith IKI = 1. 

(ii) If IKI = 1, and if z(K) is a root of (1.9) with Iz(K)l = 1, then z(K) is a simple 
root of (1.9). 
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Assumption 1.3 (see [5, Assumption 5.4 together with Definition 10.1]; compare [3, 
Assumption 2.3], and Osher [10]). The basic scheme (1.6a) belongs to the family of 
schemes for which the Gustafsson-Kreiss-Sundstrbm theory in [5] holds. This family 
contains in particular the following two classes: 

(i) Dissipative basic schemes; i.e., schemes for which the roots Z(K) of (1.9) satisfy 

(1.10) JZ(K)J < 1 for allK with IKI = 1, K 0 1. 

(ii) Unitary basic schemes (also known as strictly nondissipative schemes) where 
the roots of (1.9) satisfy 

(1.11) JZ(K)I= 1 for all IKI= 1. 

Obviously, if the basic scheme belongs to any of these two classes, then it satisfies 
the von Neumann condition in Assumption 1.2(i). 

Assumption 1.4 ([5, Assumption 5.5]; [3, Assumption 2.4]). 

a-r(Z), ap(z) 0 0 for all IzI > 1. 

Assumption 1.5. We assume that 
m 
E |cJ(z)| I 0 for all IzI > 1 
J =O 

where, in analogy with (1.8), 
q 

(1.12) c1(z) c1( l- E3 z? l c0, j= 0,... ,m. 
G=O 

Assumption 1.5 is necessary for stability, as shown in Remark 3.4 below. This last 
assumption-which should have been included in [3] as well-is easily verified for 
all practical boundary conditions. 

2. Statement of Results and Examples. In order to state our main stability criteria 
we define, in complete analogy with (1.7), the boundary characteristic function 

m 

R(Z, K) = C cJ(Z)KJ 
J =O 

where the cJ ( z) are given in (1.12). Defining the function 

Q(z, K) IP(Z, K)IJ + |R(Z, K)I, 

we shall prove 

THEOREM 2.1 (1ST MAIN THEOREM). Approximation (1.6) is stable if 

(2.1) Q(z, K) * 0 for all lz> 1, O<I< IK 1, (Z, K) 0 (1,1). 

Next, let us divide the (z, K) domain in (2.1) into three disjoint parts and restate 
Theorem 2.1 as follows: 

THEOREM 2.1' (1ST MAIN THEOREM REVISITED). Approximation (1.6) is stable if 

(2.2a) Q(Z,K) 0 for alllzl>1,IKI= 1K 1; 

(2.2b) Q (z, K = 1) 0 0 for all IzI > 1, z 0 1; 

(2.2c) Q(Z,K) 0 0 for allzl 1,0<IK<1. 
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The advantage of this new setting is explained by Theorem 2.2 in which we 
prdvide useful sufficient conditions for each of the three inequalities in (2.2) to hold. 
Before stating this theorem, we need the following definitions: 

Definition 2.1. The boundary conditions (1.6c) are said to be dissipative if the roots 
Z(K) of the boundary characteristic equation 

(2.3) R(Z, K) = 0 

satisfy 

IZ (K)l| < 1 for all IKI < 1 , K * 1. 

Definition 2.2. We say that the boundary conditions (1.6c) satisfy the von 
Neumann condition if the roots z(K) of (2.3) satisfy 

Iz(K)< 1 for all IK= 1. 

Definition 2.3. The boundary conditions (1.6c) are called boundedly solvable if there 
exists a constant K > 0 so that for each y E 12(Ax) there is a unique solution 
w E 12(Ax) to 

(2.4) 71lwv =Yv 0 1= 0,1,2....I 

with llwll < KIIYII. 
Evidently, these definitions are analogous to those made for the basic scheme in 

Assumptions 1.3(i), 1.2(i) and 1.1, respectively; and again, dissipativity implies the 
von Neumann condition. 

Having these definitions, we shall prove 

THEOREM 2.2 (2ND MAIN THEOREM). (i) If either the basic scheme or the boundary 
conditions are dissipative, then (2.2a) holds. 

(ii) Inequality (2.2b) is satisfied if any one of the following holds: 
(a) The basic scheme is two-level. 
(b) The basic scheme is three-level and 

(2.5) Q(Z = -1, K = 1) 0 0. 

(c) The boundary conditions are two-level and at least of zero order of accuracy. 
(d) The boundary conditions are three-level, at least zero-order accurate, and 

(2.5) is satisfied. 
(iii) If the boundary conditions satisfy the von Neumann condition and are boundedly 

solvable, then (2.2c) holds. 

The proofs of Theorems 2.1 and 2.2 are given in Section 3. 
We turn now to examples. Before doing so, let us recall one more result which 

provides a useful sufficient condition for the boundary conditions to be boundedly 
solvable. 

LEMMA 2.1 ([3, Lemma 3.2]). (i) The boundary conditions (1.6c) are boundedly 
solvable if and only if 

q 

(2.6) T1(K) E cJ( )Kj 0 forallO < IKs1 1. 

J =o 

(ii) In particular, explicit boundary conditions are always bounidedly solvable. 
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This result is associated with important observations on solvability by Osher [11]. 
We remark that part (i) of Lemma 3.2 in [3] merely states that if (2.6) holds, then 

the boundary conditions are boundedly solvable. Following the proof of Lemma 3.2 
in [3], however, one realizes without difficulty that in fact, (2.6) is both sufficient and 
necessary for the bounded solvability of the boundary conditions (1.6c), as stated 
above. 

Example 2.1 ([3, Example 3.5]; compare the special cases in [5, Theorems 6.1-6.3], 
[9, Theorems 18.1, 18.2], [12, (3.2)], and [2, Example 2]). Let the basic scheme (1.6a) 
be arbitrary (dissipative or not), and let the boundary conditions (1.6c) be generated 
by the right-sided, first-order accurate, explicit Euler scheme 

V,(t + At) = v,(t) + Xa[v,+1(t) - v(t)], 0 < Xa < 1, v = 0,...,r - 1. 

These two-level boundary conditions are known to be dissipative (see [3, Example 
3.5]), hence Theorem 2.2(i)(iic) implies (2.2a, b). Since the boundary conditions are 
explicit, then by Lemma 2.1 they are solvable; and since they are dissipative, the von 
Neumann condition is satisfied. Consequently, Theorem 2.2(iii) yields (2.2c), and 
stability is established by Theorem 1.2'. 

It is a trivial matter to verify that for this, as well as for all the following examples, 
Assumption 1.5 is fulfilled. 

Example 2.2 ([3, Example 3.6]; compare the special cases in [12, (3.3)], and [2, 
Example 3]). Take an arbitrary basic scheme, and determine the boundary condi- 
tions by the right-sided, first-order accurate, implict Euler scheme 

v,(t + At) - Xa[v,+,(t + At) - v,(t + At)] = v^, Xa > 0, v = 0,... ,r-1. 

As in the previous example, the boundary conditions are two-level and dissipative 
(e.g. [3, Example 3.6]), so Theorem 2.2(i)(iic) gives (2.2a, b). The dissipativity of the 
boundary conditions also implies the von Neumann condition. And it is trivially 
verified ([3, Example 3.6] again) that TIL(K) = 0 for IKI < 1 (where TI(K) is defined 
in (2.6)), so that Lemma 2.1(i) implies solvability. Thus, (2.2c) follows from Theorem 
2.2(iii); and Theorem 2.1' assures stability. 

Example 2.3 (compare the special cases in [8, Theorem 6], [10, Section XXIII], [5, 
Theorems 6.1 and 6.3], [1], [6, Theorem 2.1], and [3, Example 3.1]). Take an arbitrary 
two-level basic scheme, and define the boundary conditions by horizontal extrapola- 
tion of order X - 1: 

(2.7) v,(t + At) = E (- )(-)i?1v,+?(t + At), v = 0, .. ,r-1. 
j=l 

We have 

R(z, K) = R(K) = 1- E ()(-1)IKJ = (1 - K), 

so R(K) # 0 for K = 1, which directly gives (2.2a, c). Moreover, since the basic 
scheme is two-level, Theorem 2.2(iia) implies (2.2b); and Theorem 2.1' again proves 
stability. 

It is interesting to note that the above result may fail, both for nondissipative, and 
dissipative basic schemes, if the basic scheme is of more than two time-levels. A 
nondissipative example was given in Theorem 6.2 of [5] by Gustafsson et al. who 



HYPERBOLIC INITIAL-BOUNDARY VALUE PROBLEMS 369 

showed that the unitary, 3-level Leap-Frog scheme 

(2.8) v,(t + At) = v,(t - At) + Xa[v,+?(t) - v,-(t)], v = 1,2,3,. .. 

provides an unstable approximation in combination with the linear boundary 
extrapolation ((2.7) with o = 2): 

v0(t + At) = 2v,(t?+ At) - v2(t + At). 

We proved instability ([3, (3.6)]) for the case where the basic scheme is the 3-level, 
5-point, dissipative version of (2.8): 

v,(t + At) = - (E- I)2(1 - E1) 2jv (t - At) + Xa(E -E v,(t), 

0 < - < 1, 0 < Xa < 1 - , = 2, 3, . . . 

and the boundary conditions are given by (2.7) with v = 0,1. 
Example 2.4 ([3, Example 3.2]; compare the special cases in [2, Example 1] and [6, 

Theorem 2.2]). Let the basic scheme be dissipative, and determine the boundary 
conditions by oblique extrapolation of order w - 1: 

(2.9) v, ( t + A t ) = E (A) (_1))Jv?+j[t _-(j - i)At], v = 0,.. .,r - 1. 

Since the basic scheme is dissipative, then Theorem 2.2(i) implies (2.2a). Further- 
more, the boundary characteristic function for (2.9) is 

R(Z K)= 1 -L (J)(-1)Iz'JKJ = (1 -z1K) 

hence 
(2.10) Q(z, K) |R(Z, K)I 0, Z # K. 

This yields (2.2b, c); and Theorem 2.1' implies stability. 
Example 2.5 ([3, Example 3.3]; compare the special cases [5, Theorem 6.1], [12, 

(3.4)], and [2, Example 4]). Take any dissipative basic scheme, and let the boundary 
conditions be generated by the second-order accurate Box-Scheme 

v^(t + At) + v,+?(t + It) - Xa[v,+?(t + At) - v,(t + At)] 
= vj(t) + v,+?(t) + Xa[v^+I(t) - v,(t)], v = 0, ...,r-1. 

As in the previous example, dissipativity implies (2.2a); and Theorem 2.2(iic) implies 
(2.2b). Next, we recall Example 3.3 of [3] where it was shown without difficulty that 
the roots Z(K) of the boundary characteristic function satisfy IZ(K) I = 1 for IKI = 1, 
and that T1(K) # 0 for IKI < 1. Thus, the boundary conditions satisfy the von 
Neumann condition; and Lemma 2.1(i) implies solvability. With this, Theorem 
2.2(iii) gives (2.2c), and by Theorem 2.1' stability follows. 

Example 2.6 ([3, Example 3.4J; compare the special case in [9, Theorem 18.1]). 
Take any dissipative basic scheme, and define the boundary conditions by the 
right-sided, 3-level, weighted Euler scheme 

(2.11) vv(t + At) = v,(t - At) + Xa[2v,+?(t) - v,(t + At) - v,(t - At)], 

As in the two previous examples, Theorem 2.2(i) implies (2.2a). Further, we have 

R(z, K) = 1 - - Xa(2KZ-1 - 1 - 2); 
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SO 

Q(z = -1, K = 1) > |R(z = -1, K = 1)| = 4Xa > 0, 

and Theorem 2.2(iid) yields (2.2b). Next, as in Example 3.4 of [3], we find that the 
roots of R(Z, K) satisfy 

(2.12) Z(K = e'f) = elXa + b(O) b(() - (Xa)2 + e-2i'[1 -(Xa)2] Xa ?1I 
and since 0 < Xa < 1, then jb(()j < 1 for 141 < 7T. Therefore 

IZ (K = e'() I 
Xa 

1+j(14)j < , 11 T Xa ?+b ) 

so the von Neumann condition holds. By Lemma 2.1(ii) we also have solvability. 
Hence Theorem 2.2(iii) yields (2.2c); and Theorem 2.1' assures stability. 

Example 2.7. Let us keep the boundary conditions in (2.11) with 0 < Xa < 1, and 
extend the result of Example 2.6 to nondissipative basic schemes whose characteris- 
tic functions satisfy 

(2.13) P(z = -1, K = -1) # 0. 

Evidently, we obtain (2.2b, c) precisely as in the previous example. In order to 
prove (2.2a) we set p = (Xa)2 and observe that b(() in (2.12) satisfies for 0 < I I < X, 

4 p2 +(1 p)2 + 2p(1 - p)cos24 < p2 +(1 - p)2 + 2p(1 - p) 1. 

Thus, by (2.12), 

|Z (K= e() I < 
Xa + b(1)j < I 0 < 141 < 7T; Xa? <1I 

or in other words 

(2.14) R(Z, K) # ?, IZI >, 1, IKI 1, K +_ 1. 
By (2.12) again, 

Xa ? 1 
Z(K = -1) = - >a+1 Xa ? 1 

hence one root is Z(K = -1) = -1 and the other satisfies IZ(K = -1)1 < 1; SO 

(2.15) R(Z, K = -1) # 0, IzI ? 1, z # -1. 

Collecting (2.13)-(2.15) we find, therefore, that 

Q(Z, K) = IP(Z, K) I+ ?R(Z, K)l # 0, IZI > 1, IKI = 1, K # 1. 

Thus, (2.2a) is established, and Theorem 2.1' implies stability. 
We remark that certain well-known nondissipative basic schemes satisfy (2.13). 

This includes, for example, the unitary Crank-Nicolson scheme 

v'(t + At) - Xa[Vr+1(t + At) - v-1(t + At)] 
(2.16) 

4 

= v(t) + - [vP+1(0) - vV_1(t)], v = 1,2,3,...; 

and the almost-dissipative*** backward Euler scheme 

vv(t + ?At) - 2a [VV+1(t + At) - v'_1(t + At)] = V(t), 
(2.17) bl 

v = 1 , 2, 3, . .. , 

***We call a basic scheme allmost dissipattive if (1.10) holds, except for a finite number of Kc, IKI 1. 
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which is included in the family of schemes for which the Gustafsson-Kreiss- 
Siundstrom theory holds. 

If we consider, however, the almost-dissipative Lax-Friedrichs scheme 

v,(t + At) = 2 [vP+1(t) + vJ1(t)] + Xa [V+i(t) - VP-(t) 

0 < Xa < 1, v = 1,2,3, ... 
(which is also admitted by the Gustafsson-Kreiss-Sundstrom theory; e.g. Osher [10]), 
we find that P(z = -1, i = -1) = 0, i.e., (2.13) fails. Indeed, it can be shown that 
this scheme together with the boundary conditions in (2.11) provides an unstable 
approximation. 

Example 2.8 (compare [15, (3.7)] and the special case [16, Example 6.2]). Take any 
two-level basic scheme, and determine the boundary conditions by the right-sided, 
two-step Euler scheme 

v,(t + At) = v,(t - At) + 2Xa[vv+?(t - At) - vp(t - At)], 
0 < Xa < 1/2, v = 0,...,r - 1. 

Then, 

R(z, K) = 1- z-2[1 + 2Xa(K - 1)], 

so the roots Z(K) of R(z, K) satisfy 

|Z(Kc = e't) 
1 

= I + 4Xa(2Xa -1)(1 -cost) < 1, 0 < 1414 <T. 
That is, our explicit boundary conditions are dissipative and satisfy the von 
Neumann condition. Hence, by Lemma 2.1(ii) and Theorem 2.2 we obtain (2.2), and 
Theorem 2.1' assures stability. 

Example 2.9 (in [5, Theorem 6.3] and [6, Theorem 2.2]). Consider the unitary, 
unconditionally stable Crank-Nicolson scheme in (2.16), with Xa < 1 and oblique 
extrapolation at the boundary: 

(2.18) v0(t + At)= L ( )()i u1[t -(j - ')At]. 

Since we have (2.10), then in order to comply with the assumptions of Theorem 2.1 it 
remains to show that 

&2(z, K) -IP(z, K)I + R(z, K)I 0 , z = C, IKI= 1, K # 1, Xa < 1; 

so it suffices to prove that 

(2.19) P(z, K) 1- 4 (K - 
K-1) 

- -[1 + 4 (K 
- 

K-i)] o , 

z Kc = e'4, 0 < 4 7r,Xa <1. 

Indeed, 

P -z = e't, K- = e -l = (1 - - + cos 

so we immediately obtain (2.19), and stability follows. 
Example 2.10 (in [6, Theorem 2.2]). Take the almost-dissipative, unconditionally 

stable backward Euler scheme in (2.17) with the oblique boundary extrapolation in 
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(2.18). As in the previous example, in order to prove stability via Theorem 2.1 it is 
sufficient to show that 

(2.20) P(z, K) I 2 (K - ICa) _ Z- o z c 

Since 

P(z e'l, K = elt) - 1-cost ? i(l - a) sin 
we get (2.20), and stability is established. 

3. Proofs and Remarks. In order to prove Theorems 2.1 and 2.2 we begin by 
considering the basic characteristic function P(z, K) in (1.7). By Assumption 1.4, for 
each z with jz/ > 1, P(z, K) has r + p roots K(z). These roots, which play a major 
role in the stability analysis of approximation (1.6), have the following separation 
property: 

LEMMA 3.1 ([3, Lemma 4.21; compare [5, Lemmas 5.1 and 5.2]). For lzl > 1, the 
basic characteristic function P(z, K) has precisely r roots K(z) with 0 < IK(z)I < 1, p 
roots with IK(z)I > 1, and no roots with lK(z)I = 1. 

According to this lemma, the roots K(z) of P(z, K) split for IzI > 1 into two 
groups: r inner roots satisfying IK(z)I < 1, and p outer roots with IK(z)I > 1. Using 
Assumption 1.4 and a continuity argument, we see that these groups of inner and 
outer roots remain well defined for IzI > 1 as well, where milder inequalities, 

IK(Z)I < 1 and IK(Z)I > 1, hold, respectively. Since by Assumption 1.4, K = 0 is not a 
root of P(z, K) for IZI > 1, we obtain 

LEMMA 3.2 ([3, Lemma 4.3]). For IZI > 1, the r + p roots K(z) of the basic 
characteristic function P(z, K) split into r inner roots with 0 < IK(z)I < 1, and p outer 
roots with IK(Z)I > 1. 

We can now quote our main preliminary stability criterion in [3]: 

THEOREM 3.1 ([3, Theorem 4.2]). Approximation (1.6) is stable if and only if for 
every z with lzl > 1 and each corresponding inner root K(z) of P(z, K), the boundary 
characteristic function R ( z, K) satisfies 
(3.1) R(z, K(Z)) ? 0. 

If K(z) is an inner root for z, Iz > 1, then by definition, 

P(z, K(z)) = 0. 

Thus, combining this fact with (3.1), we immediately obtain 

COROLLARY 3.1. Approximation (1.6) is stable if and only if for every z with I zI> 1 

and each corresponding inner root K(z) of P(z, K), 

(3.2) QA(z, K(Z)) IP(z, K(Z))I + IR(z, K(Z))I 0. 

We shall need yet another result which describes the behavior of the inner roots 
forz = 1: 

LEMMA 3.3 ([3, Lemma 5.1]). If z = 1, then K = 1 is not an inner root of P(z, K). 

This brings us to 
Proof of Theorem 2.1. Take any z, lzl > 1, and let K(z) be a corresponding inner 

root of P(z, K). If z # 1, then by Lemma 3.2, we have 0 < IK(z)I < 1; SO (2.1) 
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implies (3.2). If on the other hand, z = 1, then by Lemma 3.3, K(Z) = 1 is excluded 
as an inner root; so by Lemma 3.2 we have 0 < IK(Z)I < 1, K(Z) # 1, and again (2.1) 
yields (3.2). By Corollary 3.1, therefore, approximation (1.6) is stable, and the proof 
is complete. O 

Proof of Theorem 2.2. (i) If either the basic scheme or the boundary conditions are 
dissipative, then by Assumption 1.3(i) and Definition 2.1, either 

P(Z, K) 0 O, |ZI >, 1, |K| 1, K 0 1, 
or 

R(z, K) 0 ?, |ZI >, 1, |K|- 1, K 0 1; 
and (2.2a) follows. 

(iia) Since the basic scheme is consistent with (1.5), it is at least first-order 
accurate; so, in particular, it satisfies the ordinary zero-order accuracy condition 

p s P 

X, ai( l)= X, E aJO, 
j=-r a=O j=-r 

which we equivalently write as 

(3.3) P(z = 1, K = 1) = 0. 

By assumption, the basic scheme is two-level, so the function P(z, K = 1) is a first 
degree polynomial in z 1 which, by (3.3), has a unique root z1 = 1. Thus, 

P(Z, K = 1) # 0, tZt > 1, z # 1, 

and we obtain (2.2b). 
(iib) In the 3-level case we still have (3.3), but now P(z, K = 1) is a second degree 

polynomial in z1- with real coefficients. By (3.3), z1 = 1 is one of the roots, so the 
other root must be real as well; thus 

(3.4) P(z, K = 1) # 0, tZt = 1, z # + 1. 

In addition, since the basic scheme satisfies the von Neumann condition (Assump- 
tion 1.2(i)), then 

(3.5) P(Z,K = 1) # 0, tZI > 1. 

By (3.4) and (3.5) therefore, 

(3.6) Q(z, K = 1) 0, tZt > 1, z# + ?1 

which together with (2.5) gives (2.2b). 
The proof of (iic) is identical to that of (iia), except that P(Z, K) is replaced by 

R(z, K), where by the zero-order accuracy of the boundary conditions, we have 
R(z = 1, K = 1) = 0 instead of (3.3). 

For the proof of (iid) we still have (3.5); and since the boundary conditions are 
three-level we may replace (3.4) by 

(3.7) R(z, K = 1) # 0, tzt = 1, z# + 1. 

By (3.5) and (3.7) we obtain (3.6) again, which together with (2.5) yields (2.2b). 
(iii) Since the boundary conditions are assumed to be boundedly solvable, then by 

Lemma 2.1(i) we have 
q 

,38a 71(K _ 
C-,)K 

0 0. , <,K 
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Moreover, by (1.6c) and (2.6), 

(3.8b) T11(0) = CO(-I) 0 . 

So, combining (3.8a, b) we obtain 

(3.9) T1(K) # 0, IKI < 1. 

Now, the function zq?lR(z, K) is a polynomial in z and K, so it can be written as 

(3.10) zq ?R(Z, K) = (Z - Z1) ... (Z - Zd)RO(z, K), 

where RO (Z, K) is a polynomial in K whose leading coefficient is a nonvanishing 
constant and whose other coefficients are rational functions of z. By Assumption 1.5, 
the boundary characteristic function 

m 

R(Z, K) E CJ(Z)Kj 
J=O 

is not the zero polynomial in K for any (fixed) z with lzl > 1. Thus, the zj in (3.10) 
must satisfy 

Izil < 1, j = l,...,d. 

It follows that the leading coefficient of zq+? R(z, K) (as a polynomial in K) iS 

uniformly bounded away from zero for all lzl > 1. Hence, the roots K = K(Z) of 
zq+1 R(z, K), and therefore those of R(Z, K), are continuous functions of z for 

IZI > 1. 
Since by hypothesis, the boundary conditions satisfy the von Neumann condition, 

then for IzI > 1, the function R(Z, K) does not vanish on the unit circle IKI = 1. 
Hence, by the continuity established above, the number of roots K = K(Z) of R(Z, K) 

satisfying IK(Z)I < 1, is independent of z, IzI > 1, and it thus equals the number of 
roots K, IKI < 1, of the function 

R(z -- X, K) -T1(K). 

By (3.9) therefore, R(Z, K) has no roots IKI < 1 for IzI > 1, so the roots K(Z) of 
R(Z, K) satisfy IK(Z)I > 1 if IZI > 1. Thus, for IzI > 1, these continuous roots satisfy 

IK(Z)I > 1, i.e., 

R(Z, K) # 0, IK| < 1, IZI > 1, 

and (2.2c) follows. O 
In concluding the paper we make the following remarks. 
Remark 3.1. Our main results in [3] follow immediately from the present ones. 

Indeed, consider Theorem 3.3 of [3] where we assume that the basic scheme is 
dissipative, that the boundary conditions are boundedly solvable and satisfy the von 
Neumann condition, and that 

(3.11) R(z, K = 1) 0, Izt = 1, z # 1. 

With these assumptions, Theorem 2.2(i)(iii) gives (2.2a, c). Moreover, by Assumption 
1.2(i) we have (3.5), which together with (3.12) yields (2.2b). Thus, Theorem 2.1' 
implies stability, and Theorem 3.3 of [3] follows. 
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In Theorem 3.4 of [3] it is assumed that the basic scheme is arbitrary, that the 
boundary conditions are boundedly solvable and dissipative, and that (3.11) holds. 
Again, Theorem 2.2(i)(iii) yields (2.2a, c), and (3.11) together with (3.5) gives (2.2b); 
so Theorem 2.1' implies Theorem 3.4 of [3]. 

Theorems 3.1 and 3.2 in [3] follow from Theorem 2.1' and 2.2 with similar ease. 
Remark 3.2. Examples 2.1-2.6 contain all the main examples in [3]. Example 2.3 

with a nondissipative basic scheme, and Examples 2.7-2.10, are new in the sense 
that they could not have been handled by our old results in [3]. For Examples 2.3, 
2.7, 2.9 and 2.10 this is true since Theorems 3.1-3.4 in [3] require that either the 
basic scheme or the boundary conditions be dissipative. For Example 2.8, where the 
basic scheme is not necessarily dissipative but the boundary conditions are, one may 
hope that Theorem 3.4 of [3] would help. But R(z = -1, K = 1) = 0; SO (3.7) in [3] is 
violated, and Theorem 3.4 of [3] fails. 

Remark 3.3. Not all interesting cases are covered by our results. For instance, 
Gustafsson et al. showed in Theorem 6.1 of [5] that the Leap-Frog scheme in (2.8) 
together with the linear oblique boundary extrapolation 

vo(t + At) = 2v,(t) - V2(t - At), 

provides a stable approximation. We easily find, however, that 

Q(z = -1, K = -1) = |P(Z = -1, K = -1)I + |R(z = -1, K = -1)j = 0, 

so (2.1) may not hold. Consequently, Theorem 2.1 fails for this example, showing 
that our criteria are sufficient but not necessary for stability. 

Remark 3.4. Let us show that Assumption 1.5 is necessary for the stability of 
approximation (1.6). Indeed, if Assumption 1.5 fails, then at some z = zo with 

Izol > 1, all the c_(z) in (1.12) vanish simultaneously. Hence, 
m 

(3.12) R(z = zo, K) C jc(ZO)K 
= 0; 

j=O 

that is, R(z = zo, K) is the zero polynomial in K. By Lemma 3.2, for z = zo, the basic 
characteristic function P(z, K) has r inner roots K(ZO) with 0 < IK(ZO)I j 1. For each 
of these roots (3.12) implies 

R(z = Zo, K = K(Zo)) = 0, 

and Theorem 3.1 assures instability. 
For example, consider any dissipative basic scheme with boundary conditions 

determined by the two-level, zero-order vertical extrapolation: 

(3.13) vv(t + At) = vv(t), p = 0,...,r - 1. 

Clearly, these explicit boundary conditions are boundedly solvable (Lemma 2.1), and 
they satisfy the von Neumann condition. Thus, the hypotheses of Theorem 2.2 hold, 
and Theorem 2.1' seems to imply stability. As mentioned in Section 4 of [14], 
however, the approximation is unstable. The reason for this instability is that the 
boundary conditions in (3.13) fail to satisfy Assumption 1.5, since 

m 
E 1Cj(Z)1Z=1 = 11 - Z-11Z=1 = o. 
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This example, though found unstable in the sense of Definition 3.3 of [5], is stable in 
the '2 sense described in [14]. 

Remark 3.5. It is known that the accuracy of the boundary conditions plays a 
decisive role in determining the overall rate of convergence of the difference 
approximation. In fact, Gustafsson [4] has shown that if approximation (1.6) is 
stable and the basic scheme is accurate of order 8, then an overall 8 rate of 
convergence is assured if the boundary conditions are of 8 - 1 order of accuracy at 
least. 

Now, if we use horizontal or oblique boundary extrapolation as in (2.7) or (2.9), 
then obviously there is no restriction on accuracy at the boundary. In general, 
however, the question of maximal possible accuracy for the boundary conditions can 
be quite difficult if the boundary conditions are to satisfy certain properties. For 
instance, it is not hard to see that most of the boundary conditions in the examples 
of Section 2 are stable in the sense of the definition in Assumption 1.2, with P(z, K) 

replaced by the characteristic boundary function R(z, K). Thus, it seems natural to 
raise the question of maximal accuracy for stable boundary conditions of type (1.6c). 
This question was addressed by Iserles and Strang [7, Theorems 1 and 2] who 
showed that stable, two-level boundary conditions of type (1.6c) may not be more 
than second-order accurate. On the other hand multilevel, stable boundary condi- 
tions can be constructed to any order of accuracy if q in (1.6c) is chosen sufficiently 
large. 
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